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On the analysis of thermal stresses in viscoelastic solids*

by

Eli Sternberg

Brown University

1. Introduction.

The study of thermal stresses and deformations in visco-

elastic solids has, for various technological reasons, attracted

growing attention during the past few years. This paper, which

is devoted exclusively to solids that under isothermal conditions

and for infinitesimal strains exhibit linear viscoleastic behavior,

is intended to serve a dual purpose. First, an attempt is made

to sketch a systematic account of relevant recent theoretical

developments; second, we hope to supply a helpful, if necessarily

incomplet% guide to available specific results. and to the

literature on the subject at hand.

The present treatment is largely confined to the quasi-

static analysis of thermal stresses in homogeneous and isotropic,

linear viscoelastic media. Questions regarding inhomogeneous and

anisotropic solids, inertia effects, and thermo-mechanical coupl-

ing effects, are touched upon only at the end of the paper

(Section 7).

This paper was prepared under Contract Nonr-562(25) of Brown
University with the Office of Naval Research in Washington, D.C.,
for the International Conference on High Temperature Structures
and Materials at Columbia University, New York, 1963.
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The first part of the paper (Sections 2,3,4) deals with

thermo-viscoelasticity theory within the assumption that the

mechanical response of the material is temperature-independent.

Since the rate processes of viscoelasticity are known to be highly

sensitive to temperature changes, this assumption is remote from

physical reality. The theory of temperature-independent materials

would nevertheless appear to merit attention as a useful prelim-

inary to a more realistic treatment of the problem and because it

has in fact been taken as the basis of numerous particular

investigations.

Subsequent portions of the paper (Sections 5,6) deal

with temperature-dependent viscoelastic solids, particular emphass

being placed on the theory of thermo-rheologically simple materials.

This theory rests on the hypothesis that a constant temperature

change of the entire solid affects its mechanical response merely

within a uniform distortion of the time scale. It should be

apparent that the smaller amount of space devoted here to the

influence of temperature-dependent response characteristics does

not reflect the relative importance of this influence but rather

the increased complexity of the problem once the temperature-

dependence of the material is taken into account.

Although throughout the following discussions some

attention is given to stress-strain relations in differential-

equation form, our primary preoccupation is with the more general

integral laws appropriate to solids with a continuous spectrum of

relaxation or retardation times. Such a preference is motivated
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by the well-known fact that the finite models governed by the

differential operator law (despite their heuristic value and

traditional popularity) provide an inadequate basis for the

description and prediction of actual viscoelastic behavior over

any appreciable range of time or frequency. This shortcoming is

even more pronounced in temperature-dependent models.

The following treatment of thermo-viscoelasticity theory

is strongly influenced by, and draws heavily on the results

obtained in, an earlier study of the isothermal theory contained

in Reference [i]. In particular, we make extensive use of the

properties of Stieltjes convolutions established in [1], which

enable us to cope economically with field histories that are dis-

continuous in time. As emphasized in [l], the algebra and

calculus of convolutionsfurnish the natural basic tool of linear

viscoelasticity theory. In contrast, an excessive reliance on

integral transforms has occasionally tended to obscure the issues

under consideration. Some of the theoretical results included in

this paper, though elementary in character, seem to be unavailable

elsewhere. In this sense the present paper is not wholly

expository.

2. Temperature-independent mechanical response: formulation of

boundary-value problems.

The fundamental system of field equations governing the

quasi-static linear theory of viscoelastic solids, in the absence

of thermo-mechanical coupling effects, consists of the linearized
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displacement-strain relations, the stress equations of equilibrium,

and the appropriate linear hereditary stress-strain law. We refer

this system of equations to rectangular cartesian coordinates x.

and adopt the usual indicial notation.
2

Let ui(xt),elj(x~t),di3(xt) be the component values

of the displacement, infinitesimal strain, and stress field

histories at a material point with the position vector3 x and at

the time t. The disRlacement-strain relations then become

(2.1)

whereas the stress eauations of eauilibrium assume the form

a, +Fi = o ji = (2.2)

provided F. denotes the components of the body-force density field

history.

With a view toward a convenient statement of the relevar

constitutive relations for isotropic viscoelastic solids we intro-

duce the deviatoric components of strain and stress by means of

ii2 ij - 3 Ijekk,83 0 (2.3)k

in which bij is the Kronecker delta. Next, we designate by T(x,t)

2Latin subscripts, unless otherwise specified, have the range of the
integers (1,2,3); summation over repeated subscripts is implied
and subscripts preceded by a comna indicate partial differentia-
tion with respect to the corresponding cartesian coordinate.

3Underlined letters designate vectors.
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the local instantaneous temperature and let T be an arbitrarily

chosen reference temperature. We then call the function e

defined by

e = T-To (2.4)

the temperature field history. Finally, we write a for the coef-

ficient of thermal expansion, which we shall suppose to be

constant. If instead a is a function of the temperature, all of

the succeeding considerations undergo an entirely elementary

generalization: in this instance one need merely replace a by

ao = a(To) and (2.4) by

T(x,t)
1 a(T,)dT'. (2.)
o T0

The appropriate linear isotropic hereditary stress-

strain relations in the form of the relaxation integral law now

appear as

s j = eij*dGI , d = (ekk-3a9)*dG2 . (2.6)

Here GI and G2 designate the respective relaxation moduli in shear

and isotropic compression. These moduli are at present functions

of the time exclusively since we confine our attention to homo-

geneous solids and assume until later on that the material's

mechanical response is temperature-independent. In writing (2.6)

we have employed a notation for Stieltjes convolutions introduced

previously [I] in connection with the isothermal theory. Thus,

if f and g are functions of position and time, w = f*dg stands

for the function defined by the Stieltjes integral
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t

w(xt) = [f*dg](_xt) = f f(x,t-t')dg(x,t'), (2.7)
t I=.00

provided this integral is meaningful.

We observe that according to (2.6), the local stress

tensor at each fixed instant is a linear, continuous, and isotropic

functional of the entire preceding local strain and temperature

histories; moreover, this mapping of the strain and temperature

haitories into an associated history of stress is invariant under

a translation of the time scale and has the property that the

stresses induced by a free thermal expansion vanish identically.

One can show4 (under suitable regularity assumptions) that (2.6)

is the most general stress-strain law conforming to the foregoing

requirements.

The field equations (2.l),(2.2),(2.6) must hold through-

out the space-time domain 5 Qx(-oo, oo), i.e. for all (x,t) such

that x is in the open region Q occupied by the interior of the

body and t lies in the interval (-oooo). To these field equa-

tions we may, without essential loss of generality, adjoin the

requirement that the body is originally undisturbed in the sense

of the initial conditions

ui =e iJ = 0J = Pi = E = 0 on Rx(-oo,O), (2.8)

See [1], Section 2, for the corresponding result in the iso-
thermal theory.

5 We use the conventional notation A xB for the cartesian product
of a set A and a set B.
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where R stands for the closure of (2, i.e. for the union of 9 and

its boundary. Finally, in the case of the standard mixed boundary-

value problem, the boundary conditions become

on B X(00s OO),

} (2.9)
Si = dijnj = Sb on B2 x(-oo, oo).

Here B, and B2 are complementary subsets of the boundary B of 9R,

is the outward unit normal of B, whereas ub and S are pre-

scribed surface displacements and surface tractions, respectively.

In the absence of an explicit statement to the contrary,

the point sets RBIB 2 will henceforth be assumed to be independ-

ent of the time. Further, we shall suppose from here on that R

is a bounded regular region of space6 and that BIB 2 are both

integrable.

The problem under consideration thus consists in deter-

mining field histories uieijdij which - for given RB 1 ,B2 0

known GlUaib u b _ satisfy the field

equations (2.1),(2.2)a(2.3),(2.6) in C.x(_oo, oo) and meet the

initial conditions (2.8), as well as the boundary conditions (2.9).

The temperature field history 8 may, in particular, be specified

as the solution of an independent heat-conduction problem.

For future economy we now adopt the following definition

of a

bBy a "regular region of space" we mean a region whose boundary
consists of a finite number of non-intersecting "closed regular
surfaces", the latter term being used in the sense of Kellogg [2].
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Viscoelastic state. We say that the ordered array of field

histories [u,~ei,diJ] belongs to the class of viscoelastic states

on Rx(-oo, co) corresponding to the data GlO2,a,PF,e, and write

[uo±,dJEGiG a,,,E on Rx(-oo, co) (2.10)

if:

(a) %(P=1,2) vanishes on (-ooO), is twice continuously

differentiable on [0,00), and ap(0) > 0;

(b) ujeijpF,* vanish on RX(-co,O) and are continuous on

Rx[O,oo), e being once - and ui three times continuously

differentiable on Rx[O,,oo);

(c) equations (2.1),(2.2),(2.3),(2.6) hold in ex(-oo, co).

If, in particular, 9-0 on RX(_0o, c0), we say that the state

[useijd] is isothermal and write

[ui,e ij, di 3j EV OG,%] on Rx(-oo, oo). (2.11)

Requirements (a),(b),(c) are evidently partly redundant

but mutually consistent. Also, the smoothness assumptions con-

tained in (a),(b) could be relaxed (especially as far as the time-

dependence is concerned) at the expense of more elaborate regular-

ity hypotheses. Such refinements would, moreover, necessitate

occasional supplementary smoothness assumptions in subsequent

theorems and would merely tend to detract from the main purpose

of the present paper.

It is essential to observe that the field histories

involved in the preceding definition of a viscoelastic state may
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evidently exhibit finite Jump discontinuities at t=O. Although

such singular field histories are physically unrealistic -

particularly within the context of the quasi-static theory - they

play an important part in the theory of integration of the govern-

ing field equations because of Duhamel's principle. One of the

advantages derived from the formulation of the constitutive

relations (2.6) in terms of Stieltjes convolutions lies in the

fact that it permits a systematic treatment of the relevant dis-

continuities and enables one to avoid the usual purely formal

manipulations with Dirac's delta function.

If (2.10) holds, the stress-strain law (2.6) admits the

conventional Riemann integral representation (cf. [1], Theorem 3.4),

valid for (xt) in R[O, oo),t

sij(_.,t) = Gl(t)°ij(L) + f Gl(t-t,)iij(_,tt)dt',
0

0 0

d (X,t) = G2(t) [ Ck() - 3aej) (2.12)

t
+ [ o2 (t-t,)[ (_,-,t,)t. 3(xt1)]dt'.

0

Here, as in the sequel, f stands for the first time derivative of

a function f of position and time, whereas

0
f(x) = (xO). (2.13)

We consider next the case of an elastic solid. To this

end let h henceforth denote the Heaviside unit step function

defined by
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h(t) = 0 for - co < t < Os
(2.14)

h(t) = 1 for 0 < t < oo.

It is immediate from (2.12) that for the particular choice

G = 21h , G2 = 3%h, (2.15)

where p and x are constants, the stress-strain relations (2.6)

pass over into

sij = 2e.ei , kk = 3x(ekk'3ae)" (2.16)

Equations (2.16), in view of (2.3), are equivalent to Hooke's law

(modified to account for thermal expansion), provided p and x are

the shear modulus and the bulk modulus of the elastic material,

respectively. This remark reveals the role of the classical

quasi-static theory of thermoelasticity as a special case of the

theory of thermo-viscoelasticity under consideration and motivates

the following definition.

Quasi-static elastic state. If (2.10) holds and the relaxation

functions obey (2.15), In which p and x are (positive) constants,
we say that Eui1t6j~d 1j] belongs to the class of cus -static

elastic states on Rx(-oo, co) corresponding to the data p,x,aPi,

and write

[ui,eij,dJLE [L,X,a,PF,e] on Rx(-oo,oc). (2.17)
Q

It is clear from the above definition that a quasi-

static elastic state which fails to vanish identically on

Rx(-oo, oo), cannot be independent of time on this entire space-

time domain. For, (2.17) implies that ui,ei jij must meet the
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initial conditions (2.8). Since we shall need to deal also with

purely position-dependent solutions of the fundamental field equa-

tions of thermoelasticity theory, we find it convenient to intro-

duce the notion of a

Stationary elastic state. We sa that [uieje3 di 3j belongs to

the class of stationary elastic states on R corresponding to the

data P.,x ,ja F O and write

[ui jia dIJE f- [P.,aPiJ on R (2.18)

if:

(a) g and x are (not necessarily real) constants-

(b) ui, ijPdjaFij are functions of position continuous on

R, 9 b ei once - and ui three times continuously differ-

entiable on R;

(c) equations (2.1),(2.2),(2.3),(2.16) hold in f.

The reason why we do not restrict I and x to be real

constants in the present instance will become apparent at the end

of Section 4. Meanwhile we note that (2.17) implies, for each

fixed t in (-oooo)

[ui(.,t),cia(.,t),da(,t)]E [P.,xzi(.,t),e(.,t) ] on R (2.19)7

so that every quasi-static elastic state on Rx(-0o oo) may be

regarded as a one-parameter family (with time as the parameter)

of stationary elastic states on R corresponding to the same

7 If f is a function of position and time defined on Rx(-oooo),
we write f(.,t) for the function of position defined on R that
results from the mapping f by holding the time fixed in (-oo•oo).
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elastic constants and to the appropriate family of body-force and

temperature distributions. This observation reflects the fact that

the time in quasi-static elasticity theory plays the role of a mere

parameter, whereas the quasi-static theory of viscoelasticity is

genuinely time-dependent.

We have so far based the formulation of boundary-value

problems in thermo-viscoelasticity theory upon the relaxation

integral law (2.6). On the assumption that Gp(P=l,2), SiJo and

d i meet the conditions set down under (a),(b) in the definition

of a viscoelastic state, the stress-strain relations (2.6) may

be inverted. This leads ([lJ, Theorem 3.3) to the equivalent

creep integral law

e iij = sai*dJ V kk = dkk*dJ2 +3a9 (2.20)

where J and J2 are the creep compliances in shear and isotropic

compression, respectively. Moreover, the two pairs of response

functions G and Jp (P=1,2) are linked by the relation

Gp*dJp = h on (-oco) (2.21)

or, using a notation adopted in [1] (Theorem 1.3) for the

"Stieltjes inverse" of a function of time,

-= 1  on (-oo,0o). (2.22)

Equation (2.21) implies further that

0
QPJP(t) + I 6(t.tI)JP(t,)dt, = 1 for 0 < t < o. (2.23)

0

The familiar physical significance of the relaxation

moduli and of the creep compliances is immediate from (2.12) and
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its creep counterpart. Thus

eij = h on Rx(-oo, oo) implies slj = G1 on Rx(-oo, oo), (2.24)

siJ = h on Rx(-oo0oo) implies e i = J. on Rx(-cO, 00). (2.25)

Analogous interpretations apply to G2 and J2. If f is a function

of position and time that possesses a Laplace transform with

respect to time, we write
00

)= f(xt);q3 - J f(xt)exp(-it)dt, (2.26)

0
in which q designates the transform parameter. Accordingly,

supposing $ and Jp (P=1,2) to be of exponential order as t -*00

one draws from (2.23) in conjunction with the convolution theorem

for the Laplace transform that

-d() (?) = 2. (p=1,2). (2.27)

We turn finally to stress-strain relations in differ-

ential equation formi.e. to what is traditionally referred to

as the differential operator law of linear viscoelasticity. For

this purpose we first make the following notational agreements.

If f is a (suitably smooth) function of position and time defined

on Rx(-oo,oo), we denote its n-th partial time derivative by

f(n) . Dnf (n=0,1,2,...), (2.28)

D being the time-derivative operator. Further, we write f(n) for

the function of position defined by

O(n)(x)= f(n)(x,O+) for x in R. (2.29)
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The differential operator law now becomes

PI(D)sjj = Q,(D)eij p P2 (D)dk = Q2(D)[e-3ae], (2.30)

provided Pp(D),Qp(D) (P=l,2) are the linear differential operators

Np N
P D 'Epn DF1 #Q D)-E nDF(=8) (2.31)

n=o n~ , q()

Here Np (P=1,2) is a non-negative integer and the coefficients

pP;n-'p;n are constant response parameters for a given (tempera-

ture-independent) material. Moreover, we may evidently assume

that either PnP 0 or qn;P # 0 when n = NP (P=1,2) so that, for

fixed P, at least one of the operators in (2.31) has the degree

Np. The differential equations (2.30) are to be met in ex(0,o)

and must be accompanied by the following initial conditions,

which are valid on R:

N1 0 (n-r) . 1 O(n-r)(r,2 .. p)i Pl;n'ij E q l1. 
2, 1nmr n-r ,-

N2 N (.2
N2 ;(n-r) N 2 °(n-r) - (n-r) 2.

Z P2;n kk q-~k
nwr n=r

As is clear from an elementary extension of Theorem 4.1

in [1], equations (2.30),(2.32) are implied by (2.8) and the

relaxation integral law (2.6) or the creep integral law (2.20)

provided eij,dij, and e are sufficiently smooth and according as

the relaxation moduli or the creep compliances exhibit the de-

generacies characteristic of a finite spectrum of relaxation or

retardation times. In the first case Pfn;P 9 0 for n=Np (P-1,2),
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whereas in the second instance qn;O 0 for n - No (P=1,2). The

physical significance of the initial conditions (2.32) was

established in [l](Theorem 4.2) for the isothermal case8 . Thus

suppose e vanishes identically and hold x fixed. Then, roughly

speaking, (2.32) are necessary and sufficient that every pair of

local histories ei(X,.), Csij(x,-) which vanishes on (-oo,0),

satisfies (2.30) on (0,00), and exhibits finite Jump discontinu-

ities at t=, be the limit of a pair of history sequences which

vanishes on (-oo,0), obeys the same stress-strain relations (2.30),

and has time derivatives of the orders entering (2.30) that are

continuous on (-00, 00).

If an integral law (2.6) is reducible to a differential

operator law (2.30), then the Laplace transforms of the relaxation

functions exist, are necessarily rational, and are given by (I],

Theorem 4.8)

1()= V (n) (P=l,2). (2.33)

Analogously, the reducibility of a creep integral law (2.20)

implies

= P () (2.34)

Additional results concerning the transition from an integral to

a differential operator law, and vice versa, may be found in (1J

(Section 4).

b See also Boley and Weiner [3], Art. 15.6, for a related discus-

sion.



562(25)/19 16

Since materials with a finite relaxation or retardation

spectrum admit the familiar model representation in terms of

easily visualized finite networks of springs and dashpots, the

bulk of the existing literature on viscoelasticity has favored

the differential operator law over stress-strain relations in

integral form. It is well to bear in mind, however, that such

a preference is not warranted on the grounds of theoretical

generality; nor is it Justified from a practical point of view

since an adequate description of the behavior of actual visco-

elastic solids over any appreciable range of time (or frequency)

ordinarily necessitates the use of differential operators of a

comparatively high order.

3. Temperature-independent mechanical response: general implica-

tions.

We turn next to general results concerning the funda-

mental field equations and boundary-value problems discussed in

the preceding section. In this connection we shall limit our

attention to materials governed by the relaxation integral law

(2.6); analogous conclusions apply to the creep integral law

(2.20) and to the differential operator law (2.30). To facilitate

the task at hand we first establish a link between the theory of

thermo-viscoelasticity under present consideration and the corre-

sponding isothermal theory, which is supplied by the



562(25)/.19 17

Body-force analogy. Suppose

(u:LPij, 3J]E*Y[GG2,a,i,]8J on Rx(-oo, oo) (3.1)

and

u, = ub on Bx(-oo, oo), S = S on 2x(- o, oo). (3.2)

Purther, let uiij~dijIPi be field histories defined on Rx(-oo,Oo)

by means of

Ui = uI 0 8iJ ' $ (3 .3)

;si =  dii + abij*dG ' i d Gi " ae *daa 2

Then

isZi j.98i j E7 [l, G2, Pi on Rx(- o, o) (3.4)

and

u = ub on Blx(-oo, oo), Si = sb + an 9*dG2 onB 2 X(-oo,oo). (3.5)

Conversely, if e has the same properties as in the

definition of a viscoelastic state, then (3.3),(3.4),(3.5) imply

(3.1) and (3.2).

The truth of the foregoing theorem is readily inferred

from the underlying definitions of viscoelastic and isothermal

viscoelastic states with the aid of a known result ([1],

Theorem 1.6) on the space differentiation of Stieltjes convolu-

tions. The theorem yields as a special case the well-known body-

force analogy of thermoelasticity9 if the relaxation functions

obey (2.15). Although the generalized analogy under discussion,

9 See, for example, [3], Art. 3.3.
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which reduces the mixed boundary-value problem of thermo-visco-

elasticity to the standard mixed problem in the isothermal theory,

is of no practical usefulness as far as the actual solution of

specific problems is concerned, its theoretical interest is con-

siderable. For, the analogy enables one to obtain economically

extensions to non-isothermal conditions of theorems available in

the isothermal theory. We now cite some of the more important

conclusions reached in this manner.

Volterra's [4] theorem10 concerning the uniqueness of

the solution to the mixed isothermal problem, in conjunction with

the body-force analogy, at once furnishes the

Unigueness theorem. Si!ps~e

[Ui, uije ij E G 2 aFI e on Rx(- lo,,oo), 1 3.6)

I i Is s.6)[uisi3,di~JY[GlG 2a,F± ,eJ on Rx(-co, c),(.6

and let
I !

ui =ui n Bl(-o, oo), Si M Si an B2x(-oo, oo). (3.7)

Then

[ui,eijdijJ I [u, ,se 1j]di3j + [wioo] on Rx(-oo, cc), (3.8)

where wi = 0 on RX(-oo,0) and wi represents an (infinitesimal)

rigid motion of the entire body on Rx[0,oo).

According to (a) in the definition of a viscoelastic

state, the relaxation functions entering (3.6) are required to

10 See [1], Section 8, for a slightly more general version and a
more detailed proof of Volterra's result in the special case
of an isotropic solid.
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satisfy the inequalities

0
3> o(P=102)0 (3.9)

i.e. must possess positive initial values. The striking fact

that no restrictions (apart from a smoothness assumption) need

be imposed on the subsequent behavior of GP in order to insure

uniqueness, will be made plausible shortly.

A characterization of the initial field distributions

appropriate to a viscoelastic state is supplied by the following

theorem, which is an elementary consequence of Theorem 6.1 in [1]

and of the body-force analogy.

Initial response. Let [uisei 3 ,di j ] meet (2.10). Then

0 0 0 00
EU1 11 e11d5 E d. 4L.,xscaF,E] on R (3.10)

with

=10 0
21 l 01G 2 *(3.11)

This result lends a precise meaning - within the

context of thermo-viscoelasticity theory - to the familiar asser-

tion that the initial response of a viscoelastic solid is elastic.

Moreover, the preceding theorem enables one to determine directly

the initial displacements, stresses, and strains belonging to the

solution of a mixed boundary-value problem in thermo-viscoelastic-

ity theory by solving a steady-state thermoelastic problem; the

latter is governed by the initial body-force, temperature, and

surface data of the original problem, as well as by the elastic

constants (3.11). Similarly, Theorem 6.2 in [1] furnishes an
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analogous characterization of the initial (right-hand) time

derivatives of all existing orders belonging to the desired visco-

0(n) 0(n) 2(n)elastic state. These initial time rates u. 'e j -±') (n=l,2,...)

may be found directly from the corresponding initial data by

solving successively a sequence of steady-state thermoelastic

problems, each of which is governed once again by the elastic

constants defined in (3.11). Since, according to the uniqueness

theorem of the classical (uncoupled) theory of thermoelasticity,

the inequalities .L > 0, x > 0 are sufficient to guarantee the

uniqueness of a suitably regular solution to the mixed problem,

Volterra's uniqueness criterion (3.9) is not so surprising.

An additional conclusion regarding the time-dependence

of viscoelastic states, that permits one to infer the smoothness

of the state with respect to time from the corresponding smooth-

ness of the field and surface data, is deducible from Theorem 6.4

in [1]. We proceed now to a theorem on the

Position-dependence of viscoelastic states. Let [ui, ejsi3]

meet (2.10) and assume that

v.P = 0, v,_ - o, v2 e = 0 on 2(-oo, oo). (3.12) n

Then throughout ix( -oo, oo),

V2 (V.u) = 0, V2 (V.u) =0 (3.13)

V4ui =0,V V 1j = 0* v0j 0. (3.14)

Here, as in the sequel, V is the usual spatial gradient

operators whereas V., V-, and 2 designate the divergence,
curl, and Laplacian operators, respectively.
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Thus in the present circumstances, as in thermoelasticity

theory, (3.12) imply that the dilatation and the rotation are

harmonic, while the cartesian components of displacement, strain,

and stress are biharmonic functions of position. It follows that

all of these field histories possess continuous space derivatives

of all orders. The above theorem is a consequence of Theorem 6.6

in [1J.

The counterpart of Bettits elastostatic reciprocal rela-

tions in the isothermal theory or viscoelasticity given in (1]

(Theorem 7.4), in view of the body-force analogy,, the divergence

theorem, and by virtue of Theorems 1.2, 1.6 in [1J, leads to the

f ollowing

Reciprocal theorem. Suppose

[uiqe ild iaj ~ G1, Q, a, Fi,eJ on Rx (-CO 0 o)

[u pe,d,,]E-[,,G2 ,a,F,,eJ on Rx(-ooco). }(.5
Then,, on (on, oo) p

1S *du dA + f F *du IdV + a fe*de *dG dv
i- R i- R ii 2

fS S*du dA + 5 F *dudV + a f e'*de1 1 *dG dV=
B -R R

.f~dj*de~jdV + a fe*dei'1 *dG2dV

f5~ ~did + a fE)'*de ii*dG V (.6
R R ii 2 *(.)
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It should be emphasized that the reciprocal relations

obtained from the present theorem by specializing Gp (fj1,2) in

accordance with (2.15) and by setting e=O on Rx(-oo, co), are

distinct from the quasi-static adaptation of Betti's reciprocal

relations in isothermal elastostatics. This distinction disappears

if the body force and temperature field histories, as well as the

surface data, of the two states in (3.15) are separable functions

of position and time that share a common time-dependence. In

this particular instance the convolutions entering (3.16) (e.g.

Si*dui) can be shown12 to be reducible to ordinary products

(e.g. Siui), and the resulting reciprocal relations are identical

with those arising from the extension of Betti's theorem to quasi-

static thermoelasticity theory.

The reciprocal theorem stated above may be used to

derive formulas for the average strains induced in a (temperature-

independent) viscoelastic solid by given body-force and tempera-

ture field histories and by specified surface tractions1 3 We

include here merely a formula for the total volume change, which

can be deduced directly from Theorem 7.6 in [1 with the aid of

the body-force analogy and the divergence theorem.

12 Cf. Theorem 7.5 in (1].

13 See [5] for a derivation of analogous results in the isothermal
theory of anisotropic viscoelastic solids.
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Volume change. From (2.10) follows for t in (-oo, 0o),

AV(t) - [A*dJ 2 ](t) + 3a e(x,t)dv, (3.17)

Provided J2 is the creep compliance corresponding to the relaxa-

tion modulus G2 and where

AV(t) =f sii (x,t)dV, (3.18)
R

A(t) = x Si(xopt)dA + i F i (xt)dV. (3.19)

It is essential to observe that (3.17) may also be

derivedI  solely from (3.18),(2.2), and the second of (2.6) by

recourse to (2.21) and Theorems 1.2, 1.6 in [1]. Consequently,

formula (3.17) is valid for any solid that is in a state of

infinitesimal deformations and has a temperature-independent

linearly viscoelastic dilatational response, regardless of the

nature of its response in shear. If, in particular, Si=0 on

Bx(-oooo) and Fi--0 on Rx(- oooo), (3.17) implies

V(t) = 3a f e(x ,t)dV for t in (-oo, oo). (3.20)

R

The same conclusion was also reached by Nowacki [7](Chapter XI) on

the basis of a less direct argument. Thus, in the absence of

surface tractions and body forces, the total volume change is the

same as that which would arise from uninhibited thermal expansion.

See [6j, where such an alternative derivation is given for the
special case of a material with a purely elastic dilatational
response.
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This well-known result of classical thermoelasticity theory15 is

accordingly seen to survive without modification under the present

more general hypotheses.

The next theorem, which also pertains to vanishing

surface tractions and body forces, follows from the appropriate

specialization of a result established in [6] for a class of

temperature-dependent viscoelastic materials.

Stress-free temperature field histories. Assume (2.10) holds and

suppose Si=O on Bx[O, co), Fi=O on Rx[Ooo). Then d =O on

Rx(-oo, 00) if and only if

e(At) = a0(t) + ai(t)xi for (x,t) In Rx[oo0), (3.21)

where a0,ai are functions continuous on [0, oo).

An indication of the proof of the necessity of (3.21)

if the body is to be free from stress, appeared prior to (6] in

a note by Hilton [9]. Analogous two-dimensional theorems on

temperature distributions that fail to induce thermal stresses

(applicable to conditions of plane strain and generalized plane

stress) are also to be found in [6]. For the familiar correspond-

ing three-dimensional and two-dimensional results in thermo-

elasticity theory, which are implied by the theorems under present

consideration, reference may be made to [3], Arts. 3.9, 4.9.

Before concluding this section we merely mention several

additional implications of the body-force analogy. Thus, one may

15 See, for example, [3], Art. 9.15. The result was reached by
Hieke [8], who based his proof on an extension to thermo-
elasticity theory of Betti's reciprocal relations.
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extend Duhamel's principle of the isothermal theory (see [1],

Section 5) to the analysis of thermal stresses and deformations.

Similarly, one may obtain analogous extensions of the variational

principles of isothermal viscoelasticity theory.16 Finally, the

integral representations (in terms of Green's functions) of the

solution to isothermal boundary-value problems established in

(11] are readily generalized to include temperature effects within

the current theoretical framework.

Some further consequences of the body-force analogy

will be encountered in the succeeding section, which deals with

results that have a direct bearing on the solution of boundary-

value problems of the type formulated in Section 2.

4. Temperature-independent mechanical response: methods of

integration, available solutions.

With a view toward alternative formulations of the

boundary-value problems stated in Section 2, we now cite the

appropriate displacement equations of equilibrium and stress

equations of compatibility, which could be arrived at by a

respective elimination of either the stresses and strains, or of

the displacements and strains, among the governing fundamental

system of field equations. Actually, these desired generalizations

of the Cauchy equations of equilibrium and of the Beltrami-Michell

equations of compatibility are immediate from their isothermal

counterparts in Theorem 5.5 and Theorem 5.7 of (i] because of the

body-force analogy.

16 See Gurtin [10] for a generalization to isothermal viscoelastic-

ity theory of the classical, and of more recent, elastostatic
variational principles.
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Displacement equations of equilibrium. From (2.10) follows, on

NX(- oo, oo),

u, *d. + u d(,+202) + 2Fi = 2ae *dG (4.1)

or, equivalently,

V2uudG1 + 1 VV.u*d(0l+2G2 ) + 2 - 2a *dG. (4.2)

Stress equations of compatibility. From (2.10) follows, on

x( -c, )

V26 j*dJl +Ad k.,ij*d(2Jl+J2 ) = J (4.3)

where J is the creep compliance corresponding to G (P-1,2),

cZ - JFkj .k*dQ - (Fi j+Fji)*dJ1

- abij V2 dG2*d(i+Jl) - Co ip (4.4)

and

= J 1  (J2- 1 )*d(J1+2J2)
-1 . (45)17

The mixed problem, when cast in terms of displacements

alone, consists in finding a solution of (4.1) on rx(-oo,cc),

such that ui=0 on Rx(-oo,0) and subject to the boundary conditions

ui = ub on B x(- o, oo),

EIL(u ~+Uja,i)*dGi ++ibijuk,k*d(G2.-G)acbij*dG2]n= S b (4.6)

on B2 x(- oo,oo),

17 Here as on subsequent occasions we use the notation for the

Stieltjes inverse introduced in tlJ(Theorem 1.3). Of.(2.21),
(2.22).
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which follow from (2.9) by virtue of (2.1),(9.3),(2.6). On the

other hand, if R is simply connected and B2=B (surface tractions

prescribed over the entire boundary) the unknown stresses are

completely characterized by (2.2),(4-.3), and the second of the

boundary conditions (2.9).

Our next objective is to exhibit a particular solution

of (4.2), corresponding to vanishing body forces and to a given

temperature field history, by generalizing the familiar thermo-

elastic potential, which appears to have been discovered original-

ly by Borchardt [121.

Thermo-iscoelastic potential. Let Gp (P=1,2) and meet cond-

tions (a) and (b) in the definition of a viscoelastic state.

Suppose 0 is a (sufficiently smooth) real-valued function defined

on Rx(-oooo) that vanishes on ex(-oo,O) and satisfies

V20 = 3ae*dG2*d(2G+G2)Y' (4-7)

In Vx(-oo, oo). Then throughout that domain the function u defined

by
u - VO (4.8)

satisfies (4.2), provided P=O on ex(-oo, co).

To confirm this assertion one need merely substitute

from (4.8) into (4.2), use (4.7), and invoke the algebra and

calculus of Stieltjes convolutions. 1 8 A suitably regular solution

of the Poisson equation (4.7) may, in turn, be generated with the

Il For related, though less explicit, particular solutions of
(4.2) see Parkus L13](Chapter VI) and Nowacki [7](hapter XI).
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aid of a Newtonian potential, as is apparent from Leama 9.1 in

1i]. Indeed, if p designates the right-hand member of (4.7),

such a solution is given by

g(,t)
1tP ( d- for all (x,t) in Rx(-oo, co).(.9)

The last theorem evidently supplies yet another means of reducing

the boundary-value problem of Section 2 to a mixed problem in the

isothermal theory. Further, the present theorem, in conjunction

with Theorem 9.2 in [1], leads to the following generalization to

thermo-viscoelasticity theory of the Papkovich-Neuber stress

functions in classical elastostatics.

Generalized Papkovich-Neuber solution. Let G( =1,2),e, meet

the hypotheses of the preceding theorem and let F conform to (b)

in the definition of a viscoelastic state. Suppose T ad are

(sufficlentlZ gocth) functions defined on fx (-oo, oo), both of

which vanish on Qx(- oO) and satisfy

with

H = _FP*dGl*d(2G +G2) -1  ('.11)

in ,)(-oooo). Then throughout that domain the function u defined

u = VQ + v(q,+.x.).d(C+2G2 ) - 4i.d(2G 1+G2 ) (4.12)

satisfies (41.2).
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In view of Theorem 9.4 in [1], the foregoing solution

of the displacement equations of equilibrium is complete in the

sense that every suitably regular solution of (4.2) admits the

representation (4.7), (4.10),(4.12). Consequently, the introduc-

tion of the displacement potentials (stress functions) ,cp, and j

reduces the mixed boundary-value problem to the determination of

appropriate solutions of Poisson's equation. On the other hand,

since g and j enter (4.12) under Stieltjes convolutions and

because of the structure of the second of (4.6), the application

of the boundary conditions to the generating stress functions will

ordinarily lead to a system of simultaneous integral equations.

We turn now to the well-known correspondence principle

that links the linear theories of viscoelasticity and elasticity.

This principle, which is of paramount importance to the solution

of the class of boundary-value problems with which we are con-

cerned, may - with the aid of the state definitions adopted in

Section 2 - be phrased in the following concise form.

Correspondence principle. Suppose

[ui,p5j,dijI E^YG 1 ,0 2 ,a,,Fe] on Rx(- o oo) (4.13)

and
b on Blx(-oo, oo), Si Sb on B x(- o. oo). (4.14)

Assume that GA(t) (M=l,2),ui(x,t),ei3 (x,t),F(xt), and e(x,t),

for ever x in R, are all of the exponential order O(exp(sot)) as

t -- > co, where s o is a (real) constant. Then, for each n with

Re(q) > so,
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-,n)'Fjj -on Pa'j( 'n)on R.
(4 .15)19

where

IL - n') W 'Xn - 1 (4f.16)

and further

i(., 'u. (.,on) on B 15(.-A) - (., on B2. (4.17)

The theorem Just stated evidently implies that if the

solution to the thermo-viscoelastic problem governed by (4.13),

(4.1) is Laplace-transformable, it must coincide with the inverse

transform of the solution to the one-parameter family of stationary

thermoelastic boundary-value problems characterized by (4.15),

(4.16),(4.17). Accordingly the correspondence principle yields

a reduction of the original problem to one in steady-state thermo-

elasticity theory.

To confirm the principle one need merely remove the

time-dependence from the field equations and boundary conditions

appropriate to a viscoelastic state by applying the Laplace trans-

form to (2.1),(2.2),(2.3),(2.6),(2.9) and compare the resulting

system of equations with (2.1)o(2.2),(2.3),(2.16), and (2.9). In

particular, since the stress-strain relations (2.6), because of

(2.8), imply (2.12). the convolution theorem for Laplace transforms

furnishes

19 Recall Footnote No. 7 and the notation for the Laplace trans-
form introduced in (2.26).
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iij( ,q) - nl)ijj (Ji**lP

sqk .( - n"2 (n I)(ek ( ) q 3 g ( ,p j

which, by virtue of (2.16), account for the "elastic constants"
(4.16).

Suppose now that the formulation of the original

(thermo-viscoelastic) boundary-value problem is based on the

differential operator law (2.30) together with the initial condi-

tions (2.32), rather than on the relaxation integral law (2.6).

In this case the conclusions (4.15),((4.7) continue to hold true

(in the presence of adequate regularity assumptions on the field

histories involved), provided (4.16) are replaced by

(q) s 1 X( 1) 4.))

2 3 P2 s ~.9

as is suggested by (2.33). A direct proof of the correspondence

principle applicable to differential operator laws may be conducted

by means of an argument that is strictly analogous to the one we

have outlined for the relaxation Integral law. Note, however,

that operating on (2.30) with the Laplace transform one arrives

at

IF, 1(, J0

(.,,) - W I (.,,) -3Z(.,,)( (4.20)

on R, for all q with a sufficiently large real part, only if the

initial conditions (2.32) are met.20 Thus (2.32), the physical

20 Por details see the proof of Theorem 4.7 in [1].
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significance of which was discussed in Section 2, are precisely

the conditions needed to Justify the usual formal application of

the Laplace transform to differential operator laws, in which

Jump discontinuities in J (and in their relevant time

derivatives) at t=O are either tacitly ruled out or else (2.32)

are tacitly assumed to hold. This issue was apparently first

recognized by Corneliussen and Lee (141 and was further clarified

by Boley and Weiner [31 (Article 15.6); it is treated rigorously

in considerable detail in [i].

The preceding analogy between boundary-value problems

in the linear theories of viscoelasticity and elasticity has its

origins in a paper by Alfrey [15]. Alfrey's form of the corre-

spondence principle, which is based on the differential operator

law, is confined to incompressible solids and to isothermal condi-

tions. A limited extension of Alfrey's analogy to compressible

solids is due to Tsien (16], who abandoned the assumption of

incompressibility and postulated instead an artifictal

(physically unrealistic) connection between the deviatoric and

the dilatational response of the material. Integral transforms

were first brought to bear on the question raised in [15] by

Read [17], who reduced the viscoelastic problem for a compressible

solid to an elastostatic problem with the aid of the Fourier

transform. Although the stress-strain law employed in (17]

involves only three independent differential operators, this

superfluous restriction does not affect the generality of Read's

argument. Brull [18] arrived at an analogous correspondence
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principle for a medium with a continuous spectrum of relaxation

times by means of the Laplace transform and on the basis of the

relaxation integral law; in [17] the volumetric response is

(unnecessarily) assumed to be purely elastic. Lee (19] deduced

the counterpart of Brull's version of the correspondence principle

for the general differential operator law. Hilton, Hassan, and

Russell [20] allowed for thermal expansion within the framework of

Alfrey's analogy,2 1 whereas Lee's scheme was similarly extended

to thezuo-viscoelasticity theory in (21]. Additional related

results will be referred to later on. We note, in passing, that

the initial conditions (2.32), which must supplement the differ-

ential operator law (2.30), are not mentioned in [15],[16],(17],

[19], and [20], while the particular initial conditions presupposed

in [21] are unduly stringent and hence misleading.

The extended correspondence principle was applied in

[21] to the solution of a particular spatial boundary-value

problem and has since been further exploited in the quasi-static

analysis of thermal stresses and deformations for linear visco-

elastic solids with temperature-independent properties. Specific

examples and pertinent references may be found in [3],[7], and

[13]. Nowacki's [7] monograph supplies a convenient guide to

recent Polish papers on problems of the type formulated in

Section 2. Among these we cite investigations by Nowacki [22],

[23] and by Sokolowski [24]. A study by Shaffer and Levitsky [25]

should also be referred to in the present context. Additional

21 The inclusion of the thermal expansion term is, strictly
speaking, inconsistent with the accompanying assumption of
incompressibility.



562(25)/19 34

studies, which aim primarily at dynamic thermal effects in

temperature-independent linear viscoelastic solidsj will be

mentioned in Section 7.

5. Temperature-dependent response: formulation of boundary-

value problems for thermo-rheologically simple materials.

It is evident from the preceding section, that the

quasi-static analysis of thermal stresses and deformations within

the linear theory of homogeneous, isotropic viscoelastic solids,

and in the absence of thermo-mechanical coupling, presents no

essential difficulties, provided the mechanical response of the

material is assumed to be independent of the temperature. Un-

fortunately, as was pointed out in the Introduction, such a

treatment of the problem is remote from physical reality unless

the temperature range involved is exceedingly small. The remainder

of this paper is chiefly concerned with the modifications arising

in the theory discussed so far if the relaxation moduli in (2.6),

the creep compliances in (2.20), and the material response

parameters in (2.30),(2.31) are themselves temperature-dependent.

The importance of effects that stem from the temperature-

dependence of the viscoelastic properties was emphasized and

illustrated relatively early by Freudenthal (26]0[27,[28], [29].

Special problems concerning temperature-dependent linear viscoelas-

tic solids were also considered by Hilton, Hassan, and Russell [201,

as well as by I1lton [30]; Rongved [31], Weiner and Mechanic [32],

Landau, Weiner, and Zwilcky [33], and Aggarwala [34]. All of the
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problems treated in the publications Just listed concern either

infinite plates or (solid or hollow) spheres and circular cylin-

ders, the field data and boundary conditions being such as to

preclude the presence of more than a single space coordinate.

Further, the underlying stress-strain relations correspond to

degenerate cases of the differential operator law. In fact,

the solids considered exhibit Maxwell, Kelvin, or Standard

Linear behavior in shear, while the volumetric response is

ordinarily taken to be either elastic or incompressible. Finally,

the temperature-dependence of the material is in all cases, with

the exception of [34], confined to the viscosity parameters and

its specific choice is usually in part a matter of analytical

expediency. Of particular interest is Rongveds [31] explicit

solution (in closed elementary form) for the transiont thermal

stresses in an :elastically compressible Maxwell sphere since it

accommodates an arbitrary radially symmetric temperature field

history and presupposes no restrictions upon the temperature-de-

pendence of the shear viscosity.

A systematic scheme for including the influence of

temperature on the response characteristics of a viscoelastic

solid in the analysis of thermal stresses was initiated by

Morland and Lee [351, who took as their point of departure the

temperature-time equivalence hypothesis originally proposed by

Leaderman [36] and subsequently introduced in a slightly differ-

ent form by Ferri (37]. According to this postulate the
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mechanical response of the material is affected by a uniform

temperature change only within a uniform change of the time scale;

the response is uniformly accelerated or slowed down depending on

whether the temperature is increased or lowered. Materials obey-

ing the temperature-time equivalence postulate are said to be

"thermo-rheologically simple" in the terminology of Schwarzl and

Staverman [38] who, in their expository article [39], cite experi-

mental evidence in support of the postulate, which appears to be

in remarkably good agreement with tests performed on a variety of

highi polymers over considerable temperature ranges. The

analytical framework developed in [35] was further explored in

[4o ].
We proceed now to a brief resume of the theory of thermo-

theologically simple viscoelastic solids and in this connection

consider first the required generalization of the relaxation

integral law (2.6). Thus, let GP(t) (P=1,2) henceforth denote

the values of the relaxation moduli at time t measured at the base

temperature To and denote by (,(t,T) the corresponding values

measured at the (fixed) temperature T. Consequently

G3(tT o) = GP(t) (P=l,2). (5.1)

The temperature-time equivalence hypothesis may then be expressed

analytically by

g3(t,T) p(), = ty(T) for (t,T) in (-oo,oo)x[TlT 2 ], (5.2)

where [TIT 2 ] is the temperature range for which the postulate of
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thermo-rheologically simple behavior is presumed to hold. Here

E is the "reduced time", while c represents the characteristic

"shift function" of the material, which governs the contraction

(or the stretching) of the time scale that results from the

temperature change T-T 0 . Clearly,

q(To ) - I ,p (T) > 0 (T1  T < T2 ) (5.3)

and T is evidently a steadily increasing function.

The constitutive law (2.6) must at present be confined

in its validity to a material that is permanently maintained at

the uniform temperature TO. In these circumstances one gathers

from (2.6) on setting G=O, recalling (2.7), and making use of the

commutativity of Stieltjes convolutions, that
t

sij(xt) = f Gl(t-t)deij(-xot'),
t t=-oo

t
6 k(S9 t) = f G2 (t-t1) de(,t'1).

If the material is instead permanently at the uniform temperature

T, the values Gi(t-t') In (5.4) -according to (5.2) - are to

be replaced by G ((- '), where '=tVqc(T). If, finally, the

material is under the influence of a variable (time and position-

dependent) temperature distribution T with values in [TI,T 2 ],

(5.4) are in need of a two-fold additional amendment: first, the

definition of the reduced time E must now be generalized to account

for the cumulative effect of successive temperature changes;
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second, one must allow once again for the influence of thermal

expansion. This leads to the modified relaxation integral law
t

lj(_=t) f Gi( tQ')deij(xt'),tt -Wo

t t
_kAt) f-I G2 (t-t')dk( ,t,) - 3a f , 2 (t-')ae( C- ,t'),

t ti-00. t -0

(5.5)

with t

- p(x,t) f f p(T(x,t))dt', t, = p(_x,t'). (5.6)22

0

We note that the temperature enters (5.5) both through

8 and through , In contrast to (2.6), the stress-strain

relations (5.5) imply a nonlinear dependence of the local instan-

taneous stresses upon the local temperature history. It is

apparent from (5.6),(5.3) that p(x,.) is a monotone increasing

function of the time on (-oo°oo), the inverse of which we denote

by w(x,.), whence

t w(x, ). (5.7)

If f is a function of position and time, we shall consistently

write f for the function defined by

f(_,O = f(_xW(x,r)). (5.8)

22 Although this generalization of the reduced time, introduced
in (35J, is convincing on physical grounds, a rigorous deduc-
tion of (5.5) from (5.4) and the temperature-time equivalence
postulat% appears to be lacking.
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By subjecting the variable of integration in (5.5) to the trans-

formation t'=w(x, ') one may eliminate from (5.5) any explicit

dependence upon the physical time in favor of the reduced time.

In this manner, using the notations adopted in (2.7),(5.8) and

involking once more the commutativity of Stieltjes convolutions,

one arrives at the following particularly convenient version of

the modified relaxation integral law:

Bij = i 3j*dQ1

dkk = (^-3a6)*dG2 }
As is apparent from (5.8), the convolutions in (5.9) are taken

with respect to the reduced time rather than the physical time.

We note that (5.9) have otherwise the same structure as (2.6).

Strictly analogous considerations apply to the generali-

zation of (2.20) and ultimately lead to the modified creep integral

law in the form

A

eI =s l*Q~'

Ckk ki2*dj2 + 3Ae 5.1)

which may also be deduced directly from (5.9). Finally, the

same process of specialization that leads from the integral laws

(2.6) or (2.20) to (2.30) now furnishes the modified differential

operator law

A

where D is the reduced-time derivative operator, i.e.
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a

D (5.12)

while the polynomial operators PP, Q (P-=1,2) retain their previous

meaning. To (5.11) one must adjoin the initial conditions (2.32),

which remain unaltered.

On referring (5.11) to the physical time t by means of

(5.6)..(5.7),(5.8). one is evidently led to a pair of differential

equations which has the same structure as (2.30), except that the

previously constant response parameters Pp;n'Op;n are now functions

of the temperature. It is also clear that these functions cannot

be prescribed independently for a thermo-rheologically simple

viscoelastic solid since the entire temperature-dependence of

such a solid is governed by the single shift function T. More-

over, an arbitrary disposition over the temperature-dependence of

the response parameters in (2.30) is not only incompatible with

the temperature-time equivalence hypothesis but is also readily

seen to be inadmissible on energetic grounds.

The implications of the equivalence postulate for elastic,

Maxwell, and Kelvin solids were examined in [40]. As is at once

apparent from (2.15), elastic materials with temperature depend-

ent moduli do not belong to the class of thermo-rheologically

simple viscoelastic solids. On the other hand, the shear response

of a thermo-rheologically simple Maxwell solid is found to be

characterized by

isii + 21ij , (5.13)
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in which p. and T are the shear modulus and the relaxation time of

the solid; whereas p. remains constant in the present instance,

T obeys

'(T) - To (Tl ( T < T2 ) I To = (To), (5.14)

and is thus a monotone decreasing function of the temperature.

Analogous conclusions apply to the dilatational response and to

solids of the Kelvin type. It is interesting to note that the

ad-hoc assumptions regarding the temperature-independence of

certain response parameters made in (26] to [33] are in fact

precise consequences of the temperature-time equivalence

hypothesis. Before leaving the present subject we observe that,

as pointed out by Lee and Rogers [41], the shortcomings of the

differential operator law (i.e. of finite-spectrum models) are

apt to be even more pronounced once the (thermo-rheologically

simple) temperature dependence of the material is taken into

account, in view of the concomitant contraction of the time scale.

We are now in a position to state the standard mixed

boundary-value problem in the quasi-static linear theory of

thermo-rheologically simple viscoelastic solids. A formulation

based on the modified relaxation integral law may be phrased as

follows. One is to find field histories ui, Ejdij which - for

given RBIOB2 , known GIG2 ,aT(p, and prescribed Fi,T, ub Sb -

1 2 1 2-'$ i' i
satisfy (2.1),(2.2),(2.3),(2.4),(5.5),(5.6) on gx(-oo,oo) and

meet the initial conditions (2.8), as well as the boundary condi-

tions (2.9). This problem suggests the subsequent generalization

of the definition of a viscoelastic state introduced in Section 2.
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Thermo-rheologically simple viscoelastic state. We say that

[ueis ,dj] belongs to the class of thermo-rheologically simple
viscoelastic states on Rx(-oo, oo) corresponding to the data

G1 ,G2 ,a,T o,,PiT for the temperature range [T1 ,T2 1,.and write

[u ,i*ijICjEZJ1lG2 ,aToi,FiT] on Rx(-oo, oo) (5.15)

if:

(a) , , and F, meet requirements (a),(b) in the

definition of a viscoelastic state;

(b) qp is continuous on [T1,T2 ] and obeys (5.3);

(c) T=To on Rx(-oo, O), is continuous on Rx[O, oo), and has

values in [TIT 2 ];

(d) equations (2.1),(2.2),(2.3 ),(2.4),( 5 .5 ),(5 .6) hold on

2x(- oo, o).

Evidently, (5.15) in conjunction with (T)=l for T in

[T1,T2 ] implies (2.10), whence this specialization of the shift

function y yields a reduction of the present theory to the theory

of temperature-independent materials treated in the preceding

sections.

6. Implications of thermo-rheologically simple behavior,

applications.

Our current objective is the compilation of a few

general conclusions pertaining to the theory of thermo-rheological-

ly simple viscoelastic solids. Most of the theorems about to be

cited are extensions of, and upon the appropriate specialization
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of y reduce to, analogous propositions in Section 3. We state

first the

Uniqueness theorem. Suppose

[u I Ej j]U'[GIG ,a.,Tor T (, P, T] on Rx(-oo, oo)

1 
(6.1)

[u;., e;3,d;3]E 3'[0 1,G 2 ..aT 0, Pi, TJ on R x( -oo, co)

and let

ui  u 2n Blx(-oo, oo), Si S' B2 x(-oo, o). (6.2)

Then
I I t

[ui, ijdiJ = [uilijpdij] + (wi,Oj on Rx(-oo, oo),( 6 .3)

where Wi=O on Rx(-oo,O) and w, represents an (infinitesimal) rigid

motion of the entire body on Rx[O, oo).

This result is implied by a more inclusive uniqueness

theorem established in [4.2], the latter being applicable also to

ablating viscoelastic solids. It is interesting to observe that

no restrictions on the shift function T, beyond continuity and

(5.3), are needed to assure uniqueness in the present circumstances.

The next theorem may be inferred directly from the definitions of

stationary elastic and thermo-rheologically simple viscoelastic

states with the aid of (5.8),(5.9), and Theorem 1.2 in (I].

Initial response. Let [ui,siJ,dIj] meet (5.15). Then

0 0 0 0 0
[uieijdio]d e.[.,x,a,Fi,GJ on R (6.)

with
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10 0

2. G .0, 'X G 2- (6.5)

Consequently the initial state is again a stationary

elastic state and may be found directly from the initial field

and surface data. We turn now to a propostion which follows from

a result cited23 in Section 3.

Volume change. Let [ui, j ,IJ meet (5.15) and suppose

G2 = 3xh on (-oo, oo), (6.6)

where x is a constant (elastic dilatational response). Then the

volume change is given by (3.17),(3.19).

The subsequent result was deduced in (6] and extends an

earlier observation due to Hilton [9].

Stress-free temperature field histories. Assume (5.15) holds and

suppose SI=0 on Bx[O, oo), Fi=O on RX[O, oo). Then d l=O on

Rx(-oo, oo) if and only if

e(x,t) = ao(t) + ai(t)xI for (x,t) in Rx[O,oo), (6.7)

where a0 ,ai are. functions continuous on [0, oo).

Related theorems concerning stress-free temperature

fields, applicable to plane strain and generalized plane stress,

are given in [6], where the two-dimensional theory of thermo-

rheologically simple viscoelastic solids is explored in some

detail. The two-dimensional considerations in [6] also led to a

23 See the remarks following (3.19).
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connection between the plane-strain and the generalized plane-
24

stress solution associated with one and the same plane problem.

The chief analytical complications introduced by the

departure from temperature-independent visooelastic behavior arise

in the actual solution of boundary-value problems. Unforturately,

the theory of integration presented in Section 4 does not admit a

useful extension to thermo-rheologically simple viscoelastic media.

This is true in particular of the powerful correspondence principle

discussed at the end of Section 4, which yields a reduction of the

viscoelasticity problem (for a solid with a temperature-independent

response) to a problem in steady-state thermoelasticity theory.

To bring the difficulty to which we have just alluded

into focus, we observe first that the integrals appearing in the

modified relaxation law (5.5) are no longer of the convolution

type. Consequently, an application of the Laplace transform

(with respect to the physical time) to (5.5) fails to furnish

algebraic stress-strain relations in the transform domain. The

alternative version (5.9) of the modified relaxation law, which

has the requisite convolution structure, suggests the possibility

of referring also the remaining field equations, as well as the

boundary conditions, to the new independent variables (x,) with

a view toward a subsequent elimination of the reduced time by

means of the Laplace transform. Such a procedure in general does

not result in a worthwhile simplification of the problem. Indeed,

For the analogous connection in two-dimensional thermoelasticity
theory, see Mindlin and Salvadori [43], p.762.
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let us use (5.6),(5.8) to effect the proposed change of variables

and let us agree to write f and f* for the space derivatives

and for the reduced-time derivative of a function f of position

and of the reduced time. Then the displacement-strain relations

(2.1) become

ia = (ui, j+ji) + .(uiip, +U ip i), (6.8)

whereas the stress equations of equilibrium (2.2) pass over into

AA

d iJb + % iJPj + F i = 0, J = iJ" (6.9)

Because of the terms involving p.., the transforms of (6.8),(6.9)

(taken with respect to the reduced time) no longer possess the

desired structure of (2.1),(2.2), unless p vanishes. Such will

be the case, as is clear from (5.6), if T is a function of the

time alone. In this special event one is accordingly led to a

significant generalization of the correspondence principle. To

avoid unduly cumbersome notation in the subsequent statement of

this extension we shall write

cof = ^(x,.)exp(-j )a (6.10)

0
for the Laplace transform with respect to the reduced time of a

function f with values f(x,().

Correspondence principle for purely time-dependent temperature

histories. Suppose

[ul.Pej, j]E'TqGiG2,9,T o.,,iT] on Rx(-oo, oo), (6.11)
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with T a function of the time alone, and let

ui -= b o Bx(-.oooo), Si = S on B2 x(-o. oo). (6.12)

Assume that Gp( ) (P=1,2), uij&,), ij, Fi(2, )p ad )

for every x in R, are all of the exponential order O(exp(so.)) as

--> oo, where so is a (real) constant. Then, for each q with

Re(q) > sO s

io j(.,q)o ij(-.,nl) ] E,-[j.(nj),x(Tj).,a,i(.-, ),E)(t) ] on R,

(6.13)

where

2 3

and further

Ui(,t) =uiib("r) i on B1, S(.,r ) = b(,,q) on B2 . (6.15)

The preceding analogy becomes trivial if B=B2 , Fi=O on

RX(-oo, oo), and Si =0 on B×(-oo, 00). In this instance the analogy

merely confirms our previous conclusion2 5 that dij=O on Rx(-oo,oo),

in view of the well-known theorem on stress-free temperature fields

in themoelasticity theory (3]3, Art. 3.9).

Suppose next that for non-negative time the temperature

T, is a function of position alone. In this second degenerate

case the modified relaxation integral law (5.5) may once again

be written in terms of convolutions with respect to the physical

time, as is apparent from (5.6). In fact one now has

25 Note that e conforms to (6.7) since T is at present independent
of position.
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s .j = Hl*del, ;kk = H2 *d(ekk-3a8), (6.16)

provided

Hp(x,t) = Gp(tq(T(x))) for (x,t) in Rx[O, co). (6.17)

Upon taking the Laplace transform of (6.16) one finds that

} (6.18)
Z( 'i) = 3x(x, jn) _ix, r)-3a(E, 6) 8

for each fixed q with a sufficiently large real part and for all

x in R, if

3 2 x =).1 (6.19)

But (6.18) are the stress-strain relations appropriate to an

inhomogeneous linear elastic solid. Consequently, if the tempera-

ture depends on position alone, the original boundary-value

problem in thermo-viscoelasticity theory is reducible to a steady-

state thermoelastic problem for an inhomogeneous medium. Unhappily,

this generalization of the correspondence principle is of very

limited practical interest since the complexity of the reduced

problem is apt to be comparable to that of the original one.

For the differential operator law an analogous extension

of the correspondence principle to temperature-dependent materials

was given earlier by Hilton and Russel [44] in a paper which is

based on their prell0ios report [20] with Hassan. The analysis in

[41 is confined to differential operator laws with temperature-

dependent material parameters and thus presupposes a medium with
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a finite relaxation or retardation spectrum. The analogy deduced

in [44] for purely time-dependent temperature distributions is

limited to mechanically incompressible solids (although thermal

expansion is included) and is an extension of Alfrey's (15]

principle. 26 On the other hand, no restriction is placed in (4 ]

on the linear viscoelastic volumetric response for the case of a

purely position-dependent temperature field; the correspondence

principle obtained in this instance is an elementary generalization

of Read's [17] work in the isothermal theory. Finally, (44] con-

tains a sketch of an approximative approach to the general case

of a position and time-dependent temperature field history, based

on the assumption that the material may be regarded as stepwise

temperature-independent (in time). The extent to which such an

approximation scheme is computationally feasible remains to be

assessed.

We turn now to available applications of the quasi-

static linear theory of thermo-rheologically simple viscoelastic

solids. As was mentioned before, all but one of the special in-

vestigations listed at the beginning of Section 5 are based on

temperature-dependent viscoelastic models that fall within this

category, although the problems treated were not intentionally

selected to illustrate the general theory under present consider-

ation.

26 In connoction with this extension of Alfrey's scheme the authors
remark that the effect of body forces and surface tractions may
be determined separately from, and may be superposed upon, the
ensuing thermal stresses and deformations. Such a superposition
is in fact not permissible for a temperature-dopendent material.
Indeed, as has been pointed out already, a purely time-depend-
ent temperature field would, in the absence of loads, always
induce vanishing thermal stresses.
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The temperature-time equivalence hypothesis was applied....

by Morland and Lee [35] to the plane-strain analysis of an

incompressible hollow circular cylinder which is exposed to a

stationary radial distribution of temperature and is subjected

to a suddenly applied uniform internal pressure.

Implications of the theory in circumstances that involve

temperature distributions depending on both position and time were

studied in [40], which contains exact solutions to two space

problems of this type. The first of these concerns an infinite

slab which, in the absence of loads, is confined to a purely

transverse motion, the stress-inducing temperature fibld history

being permitted to vary arbitrarily with the thickness coordinate

and the time. The second problem aims at the thermal stresses

and deformations generated in a sphere by an arbitrary transient

radial temperature distribution. Both solutions accommodate an

unrestricted (thermo-rheologically simple) temperature dependence

of the material and apply to solids with a continuous relaxation

spectrum, except that in the second problem the volumetric response

is assumed to be elastic. 2 7

We return here briefly to the example of the slab

treated in [40] since certain aspects of this problem have a

27 Although this assumption, which is common in the stress analysis
of viscoelastic solids, is in general agreement with experimental
findings, the available quantitative information regarding
volumetric viscosity effects appears to be inadequate.
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wider significance. Thns consider an infinite plate of constant

thickness ,2w and choose the coordinate frame in such a way that

x3=0 cbincides with the middle plane of the plate. Then R is

the region characterized by -a < x3 < a and B consists of the

palr of bounding planes x3-+a. We now seek a thermo-rheologically

simple viscoelastic state28 [uieij, ijI on Rx(-oo, oo) correspond-

ing to the data G1 G2,aTo&Cq,F 1 ,T, subject to the boundary condi-

tions

d 31 0 on Bx(-oo, oo). (6.20)

We assume further that T, u3 are functions of (x3,t) alone and

F1 = uI - u2 = 0 on RX(-0o, Co). (6.21)

The foregoing constraining assumptions are consistent with the

governing field equations and boundary conditions, which at

present are readily found to imply29 that all field histories

depend solely on (x3 ,t), while

ll = e22=0* e . 0 (ij) on Rx(-o,oo), (6.22)

ll = d22' d33 = 0, diJ = 0 (i;'J) on Rx(- oo o), (6.23)

whereas

26 Note that, contrary to our previous assumption* R is not
bounded in this instance.

29 See [40] for details.
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S-E*dG, 26 = (-3a 6 )*dG2 on V(-oooo), (6.24)

if we conveniently write d and e for 11 and e3 respectively.

The elimination of e among the pair of integral equa-

tions (6.24), in view of the algebra of Stieltjes convolutions

(Section 1 in [1]), now leads to

a = -3aA*J' on Qx(-oo,oo), (6.25)

where A is the auxiliary response function defined by

A = GI*dG2 *d(2GI+G2 )"1 on (-oo,oo). (6.26)30

Bearing in mind (2.7),(5.6),(5.7),(5.8), and putting x3 =x, we

draw from (6.25) that the desired stress d=dl =022 admits the

integral representation
t

d(x,t) = -3a f A( -i')d(xt') for (x,t) in Rx(-oo,oo), (6.27)

with t

= p(x,t) = fcp(T(x,t'))dt', F,' = p(x,t'). (6.28)

0
Moreover, (6.26), by virtue of Theorems 1.2, 1.3 in [1], for t

in [0, o) is equivalent to

t
GA(t) + J G(t-t:)A(t')dt' = L(t), (6.29)31

0
where

30 The same response function is also found to play a crucial
role in the problem of the sphere [40].

31 Recall (2.13).
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t
a(t) = 2G1 (t)+G 2 (t), L(t) = 2G(t) + f G1 (t-tt)i2(t1)dttP

o (6.30)

so that A satisfies a linear integral equation of Volterra's

second type. Finally, if the requisite Laplace transforms exist,

(6.29) and (6.30) furnish

-() = .... .. . . (6.31)

Formula (6.27) was obtained in [40] by applying the

Laplace transform to the pair of integral equations (6.24) and by

subsequently inverting the solution of the resulting pair of

algebraic equations. As was noted later by Lee and Rogers [41]

and is clear from the preceding derivation, there is no need to

involve the transform calculus. A similar observation is relevant

to the numerical evaluation of the solution under discussion,

which was carried out in [40] for a commercial polymethyl

methacrylate on the basis of available relaxation data and test

results for the shift function y. In this connection the auxiliary

response function A was determined from (6.31). Tne laborious

procedure adopted in [40] consisted in first devising a convenient

analytical approximation to the relaxation data that permitted the

analytical computation of A; the required values of A were then

found with the aid of two asymptotic inversions - one applicable

to large, the other to small values of the time. In contrast, Lee

and Rogers [41] subsequently re-computed A by solving the integral

equation (6.29) directly on an electronic computer. Their
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procedure, which stays closer to the actually measured data, is

evidently more direct and also more accurate.

The values of A obtained by the two alternative methods

described above are compared in Figure 1, in which E is Young's

modulus of the initial elastic response. Figure 2, which is

taken from [40], displays the time-dependence of the normal stress

6 in the middle plane of the slab for polymethyl methacrylate.

In the underlying computations it was assumed that a2/k = I hour,

k being the thermal diffusivity of the material; this choice

corresponds to a slab thickness 2a of approximately 5.7 cm. The

temperature field history used in these calculations is that

supplied by the solution to an elementary transient heat-conduc-

tion problem: the entire slab is initially at the uniform base

temperature To = 800 C and its faces at t=O are suddenly raised to

the temperature T1=IIO°C, which is steadily maintained thereafter.

Curve 1 in Figure 2 shows the stress values obtained

from (6.27). Curve 2 exhibits the behavior predicted if the

temperature-dependence of the response is disregarded and the

analysis is based on relaxation data appropriate to the average

surface temperature of 9500. Curve 3, finally, shows the results

obtained if one neglects all viscosity effects as well and deter-

mines d on the supposition of purely elastic behavior, using the

elastic constants characteristic of the initial viscoelastic

response. As is apparent, the three curves almost coalesce for

an initial period of about 10 minutes, during which the "actual"
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response is nearly elastic and hence temperature-independent.

For approximately the first 20 minutes Curve 2 slightly under-

estimates the stress values predicted by Curve I since during this

stage the temperature of the middle plane is less than the average

temperature of 95 C and consequently the actual relaxation process

is slower than that underlying Curve 2. Later on, however,

Curve 2 progressively overestimates the stress values depicted by

Curve 1 until, after a two-hour period, the actual stress is less

than 15 per cent of the corresponding value in Curve 2. These

results demonstrate once again the unrealistic character of any

viscoelastic thermal-stress analysis that leaves out of account

the temperature-dependence of the material properties.

The relative merits of the direct numerical integration

of integral equations over the use of integral transform techniques

in viscoelastic stress analysis were further discussed and

illustrated by Lee and Rogers in [45]. Apart from the fact that

this approach makes more efficient use of experimental data, it

obviates the need for long-time extrapolations from the data

beyond the time range which the desired solution of the problem

is to cover. Further, such a treatment extends the scope of the

analysis to problems which are not amenable to a Laplace-trans-

form solution. Among these are mixed problems in which the

surface tractions and displacements are prescribed over time-

dependent subsets of the boundary and problems in which the

boundary itself is a function of the time (surface ablation).
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An example of the latter type is dealt with numerically in (451,

where the solution to the problem of the sphere obtained in [40]

is generalized to accommodate an ablating spherical body. In

addition, [45J contains a formihal solution to the problem of an

ablating spherical shell; for fixed boundaries this problem was

also treated previously in [6].

Although the developments Just described are promising,

it is well to keep in mind that boundary-value problems within

the theory under consideration are reducible to the solution of

independent integral equations only in highly exceptional

circumstances. Furthermore, all of the applications available to

date depend on the fortuitous possibility that the required space

and time integrations can be carried out separately. While

certain less degenerate problems may nowadays be accessible to

a purely numerical treatment, such prospects should not detract

from the need for a systematic theory of integration.

7. Concluding remarks.

Throughout the preceding developments the material has

been considered to be isotropic with regard to both its mechanical

and its thermal response. For an anisotropic linear viscoelastic

material the constitutive relations (2.6) give way to

ij= (11a'1ae)*dGi kJ, (7.1)

in which GiJky and aij are the components of the tensor of

relaxation functions and of the thermal-expansion tensor,

respectively. Furthermore, a - ai, and
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Gijkl = Gjic = ijgk. (7.2)

The first of (7.2) follows from the symmetry of the stress tensor,

while the second entails no loss in generality because of the

symetry of the strain tensor. In addition, it is usually

assumed that

GiJk = G gj. (7.3)

This last set of symmetry relations, which is implied by (7.2) in

the special case of isotropy, expresses an independent requirement.

The available theoretical support for the validity of (7.3)

depends on thermodynamic arguments involving an appeal to Onsagerfs

reciprocity relations.32

If (7.3) are presumed to hold, the generalization to

homogeneous anisotropic solids of most of the theoretical results

discussed in this paper, presents no difficulties. This is true,

in particular, of the correspondence principle discussed in

Section 4 and Section 6, which now leads to a tie between the

linear theories of anisotropic viscoelastic and elastic solids,

as suggested by Biot [49]. An extension of this principle to

inhomogeneous (isotropic or anisotropic) viscoelastic solids is

equally elementary,33 though of little practical consequence.

32 See, for example, Biot (46],[47]. A discussion of this issue
may be found in a recent note by Rogers and Pipkin [48], as
well as in (5]. Note that the counterpart of 7.3) in
elasticity theory is implied by the existence of an elastic
potential.

33 In this connection see [20],[441, as well as Hilton and
Dong (50].
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Next, we have so far considered only the quasi-static

analysis of thermal stresses in viscoelastic solids. Thermo-

viscoelastic inertia effects have been the object of several

recent special investigations. Among these we cite publications

by Katasonov (51], Nowacki [23], (52], (53], (*5], and Zorawski (55],

156],(57],[58]. The physical significance of these investigations

is difficult to assess since they invariably presuppose a tempera-

ture-independent material, do not include quantitative discussions

of the results obtained, and usually refer only to instantaneous

temperature changes.34

Further, nothing has been said as yet about thermo-

mechanical coupling effects, which have been consistently dis-

regarded. An interesting study of such effects is due to

Hunter [60], whose analysis is set within the framework of the

theory of thermo-rheologically simple viscoelastic solids. As

suggested by the unassuming title of [60], this subject is in

need of further consideration.

Finally, it may be well to emphasize once more that the

present paper is confined essentially to linear thermal stress

analysis for viscoelastic solids. Thus no attention has been

given to the influence of nonlinear viscosity effects and to

finite deformations, which haunt the realistic treatment of

thermal stresses in metals at elevated temperatures.

Acknowledgment. The author is greatly indebted to M. E. Gurtin,
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34 Related studies in thermoelasticity theory (see, for example,
[59] indicate that the size of such inertia effects is
drastically reduced once the fiction of sudden temperature
changes is abandoned.
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Fig. 2 Slab problem. Time-dependence of a- in middle
plane for polymethyl methacrylate


